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CHAPTER 1 

Introduction 

Classical antenna structures are designed using electrically conducting elements such as wires, 

reflectors, microstrip patches, etc., as the basic radiators. The dielectric parts of traditional 

antennas serve mainly as supporting and insulating elements in the antenna system. There have 

been occasional uses of dielectrics for radiating structures, such as in polyrod antennas, lens 

antennas, or in applications such as covering the metal walls for achieving the proper polarization 

properties, e.g., in low-sidelobe horn antennas. However, the majority of antennas in present use 

are predominantly made of metal parts. 

The research project described in this report investigates a new class of antennas, which will 

have a minimum of metal parts, and consist mainly of ceramic dielectric materials mounted over 

a metal ground plane. Possible advantages of these radiating elements are wider bandwidth and 

higher power handling capabilities, as compared with microstrip antennas of similar size. 

Furthermore, dielectric radiators offer the freedom to choose a resonant mode that produces 

broadside radiation (e.g., HEMU), or another mode which produces endfire radiation (e.g., 

TEoJ. 

About ten years ago, experimental studies were conducted to determine the radiation 

characteristics of cylindrical [1] and hemispherical [2] dielectric resonator antennas (DRAs) 

residing on a conducting ground plane. Simultaneously, numerical and experimental studies of 

dielectric resonators sitiuated in free space have established the resonant frequencies of the several 

lowest source-free modes, their near field distributions and their radiation Q factors [40, 43]. 

In [1, 2] the DRAs were excited by a coaxial probe extending into the dielectric material 

through the bottom of the ground plane. One of the conclusions drawn from the experimental 

studies was that in order to obtain desirable broadside radiation characteristics, the feed probe 

must be positioned away from the resonator's axis of symmetry and near the "outer wall" of the 

dielectric resonator. 

Later, new applications for dielectric resonator antennas (DRA) were developed after having 

demonstrated that the radiation characteristics of the antennas measured in [1] could be 

numerically computed by modeling the dielectric resonator (DR) as a body of revolution (BOR), 
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and simulating the off axis coaxial probe feed as an infinitesimal dipole radiator [3], [4]. It 

should be clearly understood that the coaxial feed probe was only simulated in this work. The 

physical presence of the feed probe was not accounted for since no boundary condition was 

enforced on the feed probe itself; and as such, the antenna input impedance could not be 

obtained. When the feed probe's axis of symmetry is coincident with the axis of symmetry of 

the BOR [5], a pure BOR model can be used to compute the input impedance of a DRA since 

it allows for enforcement of the electromagnetic boundary conditions on the feed probe. Without 

knowledge of an antenna's input impedance, it is not possible for an engineer to efficiently design 

any system whose constituent components include dielectric resonator antennas. 

Until now, the only precision models the engineer had at his disposal were techniques such 

as those described in [42, 43], which are summarized in a recent monograph [6], from which the 

modal electromagnetic field distribution of a dielectric resonator in infinite homogeneous free 

space undisturbed by any feeding structure may be determined, or techniques such as [3, 4], 

where the feed probe is merely simulated. From studies of the field distribution, the engineer 

may then determine a possible location for the feed structure. However, there is still no 

information concerning the interaction of the feed structure with the dielectric resonator. 

Previous investigations of method-of-moments (MoM) analysis of structures consisting of 

combined BORs and wires have been restricted to perfect electric conductors (PEC) only. In [7], 

a technique used for the computation of input impedance of monopole antennas in the presence 

of conducting BORs was introduced. Far field patterns were computed for rotationally symmetric 

conducting bodies with attached wires considered as both radiating [8] and as scattering [9] 

problems. The problem of computation of the input impedance of wire antennas attached on-axis 

to a BOR was solved in [10]. Radiation patterns from reflector antennas with struts [11] were 

computed from currents obtained after applying the techniques introduced in [8] and [9]. The 

reflector surfaces were modelled as BORs and the struts as wire structures. The BOR/wire 

concepts have been applied to arbitrary surfaces in combination with conducting and dielectric 

BORs [12-14]. 

This report builds upon this foundation by extending the existing BOR/wire technique to 

include dielectric bodies coupled to electrically thin wires [15, 17] and slot apertures [16]. 

Chapter 2 formulates a system of integro-differential equation for solving the electromagnetic 

boundary value problem generated by thin wires coupled to a dielectric BOR. This formulation 

is general in that the wires may be interior or exterior to the BOR.  A Galerkin moment method 



procedure is applied to solve this system of equations. Chapter 3 presents results of experimental 

and theoretical studies of cylindrical dielectric resonator antennas excited by a coaxial probe. 

Chapter 4 extends the theoretical development presented in Chapter 2 by formulating and solving 

the boundary value problem of a thin slot aperture coupled to a dielectric BOR. Also, the chapter 

contains results of the experimental investigation of the input impedance of various slot-excited 

dielectric radiators. Appendix A introduces an extended delta gap source model, which is used 

as a forcing function for the electric field integral equation of thin wire theory. This extended 

delta source model eliminates some of the problems associated with the existing delta gap source 

model. Additional details of the numerical formulation used in this work are provided in 

Appendices B, C, and D. 
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under review. 
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CHAPTER 2 

Thin Wires Coupled to Dielectric Bodies of Revolution 

2.1 Formulation of the Boundary Value Problem 

In this section, wires, or conducting strips, which may be modelled as wires, are considered. 

In the case of the wire, thin shall mean that the wire radius, as a function of operating frequency, 

is small enough in terms of wavelengths in the medium in which it resides so that the only 

component of current induced on the wire is that which is axially directed and circumferentially 

invariant. This definition is the same as that given by the well developed thin wire theory [18]. 

For a finite length strip to be considered thin, it's equivalent electrical radius [19] must be such 

that the definition of thin as imposed by thin wire theory is valid. The geometry of Fig. 2a 

is typical of the electromagnetic boundary value problem of a structure consisting of thin wires 

and a dielectric body of revolution (DBOR). The DBOR is represented as the cross section of a 

surface of revolution, S^.. The surface S^. has been created by the rotation of a simple curve or 

a generating arc about the Z-axis in a cylindrical coordinate system (the generating arc may be 

thought of as the intersection of a surface of revolution and a plane defined by a constant angle 

<jt in a cylindrical coordinate system). In general, the wire or thin conductor may be any 

structure which satisfies the given definition of "thin" and whose geometry can be represented 

as a simple curve. The DBOR is composed of a homogeneous material with constituent 

parameters ^ and jtd, where ed and nd are the permittivity and permeability of the material, 

respectively. The region exterior to the DBOR is composed of a homogeneous medium of 

constituent parameters e8 and /*,. The wires are represented by S«, and S«, where the subscripts 

"wd" and "we" refer to wire elements interior and exterior to the DBOR, respectively. The 

electric and magnetic field vectors are represented by the symbols E and H, respectively. 

Superscripts "dt" and "et" refer to the total field interior and exterior to the DBOR, respectively. 
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Fig. 2.1a The original problem. 
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Fig. 2. lc.  The exterior problem. 



The field vectors E and H with superscripts "d" and "e" refer to the fields which arise from the 

equivalent currents which reside on the surfaces in the interior and exterior problems, 

respectively. The superscript "i" refers to the known field, that is, the source field which excites 

the wire radiator. The equivalent electric and magnetic surface currents which arise from 

application of the field equivalence principle are represented by the symbols I and M, 

respectively. 

In accordance with the field equivalence principle [20], the original problem of Fig. 2a can 

be divided into two problems: one for the interior region, and the other for the exterior region. 

The two equivalent problems are illustrated in Figs. 2b and 2c. By enforcing the boundary 

conditions that the tangential component of the electric field must vanish at the conductor surface, 

and that the tangential components of both the electric and magnetic fields must be continuous 

across the dielectric surface, a system of integro-differential equations is obtained from which the 

unknowns J«,, Jw Mi., and Jj. can be determined. This system of equations can be written in 

operator form as the following: 

^A+L-MJ = _E4    on s- (2'2) 

E' <J  +J  ,M ) + Ed (J  +J„M ) - E*   - E*    on   S„ (2-3) 
—tto^d»   -*• it —-a»^-d»   -wd —4» —an        —ao "• 

EL&.+L.MJ + S^+J^.MJ ■ ni - SI on sd. (2-4) 

The above system of equations consists of the electric field integral equation (EFIE) on the 

conductor surface, and both the EFIE and the magnetic field integral equation (MFIE) on the 

DBOR surface. This formulation is refered to as the E-PMCHW formulation [21]. For future 

reference, the left hand side of the above system of equations shall be denoted as L(f) where L 



represents E and H and f represents the unknown currents J and M-  The right hand side of the 

same system of equations shall be denoted as g. 

2.2 The Potential Integrals 

The integro-differential operators E(J,M) and H(J,M) of Eqs. (2.1) to (2.4) are defined in 

terms of magnetic and electric vector and scalar potential functions represented by A, F, <£, and 

¥, respectively, 

IHLM) = -jwA« - V*" - IvxF« (2.5) 
S 

H'KLM) = -jwF" - V¥« + i.VxA" (2.6) 
'S 

where the potential functions are defined as 

A/(r) =M,[{G«(r,f)J(f)dS- (2.7) 

F"(I) - e,f [G^(r,QM(f)di (2.8) 

$"(r) = if fG<(r,f)p.(0d* (2.9) 

¥<(r) ~ ±UG<(t,QpJf)te (2.10) 

and S is a surface that includes the dielectric resonator surface and the wire radiator surfaces that 

contribute to the field in region q. The surface charge sources p„ and pm are related to the current 

sources through the equations of continuity 

V'«J(f) = -jwp.(f) (2-11) 



V'«M(£) = -jupn(£) (2-12) 

The function Gq is the scalar free space Green's function and is a function of r and f, the field 

and source coordinates, respectively. 

2.3 Moment Method Solution 

The surface integral equations (2.1)-(2.4) are solved by the MoM [18].   The described 

problem can be solved in an efficient manner by a judicious choice of basis and testing functions. 

First, consider the DBOR. Due to the axial symmetry, two components of electric and magnetic 

current can be identified: one directed along the generating arc,  and the other in the 

circumferential direction. The surface Sj. is divided into annular rings and upon these rings the 

surface currents are expanded as a series of overlapping functions of the following form: 

»»-N,    N-l 

(2.13) K-  £   E^NK^+K^K'J      on   S4 

where K^' and K^* are the current expansion coefficients and the basis functions are defined 

by 

K>    -ul^e>"> (2.14) 
-**       ' p(t) 

with K=L. or Md., p=t or <f>, and where u is a unit vector. The radial distance from the axis 

of the resonator to the surface S^. is p(t). In part, K is composed of the product of two functions, 

T^Oe»"*, with different spatial variation. TN(t) is a piecewise linear function (commonly called 

the triangle function) that models the variation along the generating arc, and e"0**,   an entire 

domain harmonic function used to model the circumferential variation, is the m* Fourier modal 

expansion term. The triangle function is defined in Appendix B. According to thin wire theory, 



the only component of current on a wire is that which is axially directed and circumferentially 

invariant. Hence the current on the wire is expanded in a series of functions as 

I = SdpTp(w)up    p-lA .... pw    on   Swq (2.15) 
p 

where dp is the current expansion coefficient associated with each triangle basis function Tp(w), 

and pw is the total number of basis functions on the wire. It is now convenient to refer to 

the individual terms of the series of basis functions representing the unknowns J and Mas£ and 

the unknown current coefficients as c„. The unknown current coefficients cn can be determined 

via the method of moments by forming the inner product via the Galerkin technique after defining 

a set of testing functions 2^=0*, where * is the complex conjugate. This results in the following 

system of equations 

Ec,<w ,L(f)>   = <w ,g>     m-l,2,..,N . <?-16) 

An advantage of the Galerkin procedure is the resulting symmetry in the inner products when the 

coordinates of the testing and basis functions are interchanged. The above system of equations 

may be expressed in matrix form as 

10 



[BB]_ 

IBB],^ 

rWB], [WB],., 

[BB]0   .. 

• [BW], 

0        [BW],#l 

• [BW]0 

[BB].., [BW],, 

  [BB]m    [BW]„ 

[WB]0  ...   [WB]..,  [WB]n  [WW] 

|JM>, r o 
|JM>„ 0 

|JM>0 
s 

0 

|JM>„.l 0 

|JM>„ 0 

\K> 
IV > 1      w 

(2.17) 

The vectors  |JM>„ represent the electric and magnetic current coefficients   for the n* 

Fourier mode of the basis functions which reside on Sj. and are given by 

IMi.> 
(2.20) 

The vector | Jw> represents the current expansion coefficients for the currents that reside on the 

surface S«,, q=d or e, and is given by 

U   > 
(2.19) 

11 



The matrix [BB]n is further partitioned as 

([YL,J+[Yi.J)   (-[Z^J-l[Zi,J) 
(2.20) 

where ijr
2=/t<l/e,, and a typical [Z] or [Y] matrix is of the form 

[BJ   [BJ 

[BJ   [BJ Ja        t. 

[BJ    -[BJ 

"[BJ     [BJ J "n 

(2.21) 

where [B] = [Z] or [Y], a square matrix of order N, for each Fourier mode n. The integral 

expressions for the matrices [BB]„ can be found in [22]. The matrix [BW]E is given by 

^[Z^vd   [Z^^J (2.22) 

and the matrix [WB]„ is given by 

[Z^dJ    [Y»«.dJ 
J a 

(2.23) 

The matrices [BW]„ and [WB]„ can be further partitioned as 

12 



[BW]B= 

'*&J K.] 

*KJ [z;.wi 

Ptfw] [Y:J 

[Y*.wJ [Y;.W]_ 

and [WB]„= 
[z:.j [z:.j [Y;.J [Y;J 

(2.24) 

J   * 

J a 

The matrix [BW]B is of order (4Nt x pw) and [WB]B is of order (pw x 4NJ. An increase in 

computational efficiency can be obtained by using the relationship, [WB]B= ±[BW].B
T, where the 

+ and - signs are used for the [Z] and [Y] matrices, respectively. The integral expressions for 

the matrix elements [BW], are given in Appendix B. In all of the above matrices, [ZaJ}] 

represents the inner product <w,E(D> or <w,H(M)>, whereas [YaJ represents the inner 

product <w,E(M)> or <w,-HQ)>. Furthermore, the first subscript, a, identifies the 

component of the testing function, whereas the second, ß, identifies the component of the basis 

function. 

Finally, the matrix [WW] is given by 

[ZtU      [0] 

[0]    [z;j 
(2.25) 

which also serves to illustrate the region isolation of the interior and exterior problems. 

Since the final goal is the computation of input impedance, the following steps, which are in 

essence a "mode by mode" elimination procedure, can be performed to obtain the solution for 

the current coefficients, J«,, from which the input impedance can be calculated. 

13 



|JM>a = -[BB]."'«[BW],«|JW>, n=-N,...,N (2-26) 

These results can be substituted into the last equation system (last row) of (2.19) to obtain 

[WBJvPBtt-tBW], + -. +[WB]0.[BBl0-.[BW]ffl + ... (2 2?) 

+[WB]n.[BB];1.[BW]a-[WW]l|Jw>  - -|VW>  . 

The wire current is easily obtained by inverting the bracketed term and multiplying the result by 

| Vw>. Even if quantities other than the impedance of the antenna are desired this can be an 

efficient approach. If storage is at a premium, the submatrices can be recomputed as necessary 

to determine other quantities, such as the currents on S^. Alternatively, the matrix products 

indicated in the right side of (2.26) can be stored. Storage of these products will generally 

require less space than even the non-zero submatrices shown in (2.17). 

14 



CHAPTER 3 

Theoretical and Experimental Results for DRAs with Coaxial Feed Probe Excitaion 

3.1 Computer Code Verification 

A general FORTRAN computer program was written to solve the boundary value problem 

formulated in Chapter 2. The geometry of Fig. 3.1a is that of a dielectric resonator antenna 

(DRA) excited by a coaxial probe extending through the bottom of a conducting ground plane. 

It is drawn as a rectangular cylinder for simplicity. To analyze such an antenna, it is necessary 

to invoke image theory to remove the ground plane. Removal of the ground plane results in the 

equivalent imaged problem of a DBOR excited by a dipole as illustrated in Fig. 3.1b. 

As a preliminary check to establish the validity of the computer code, the input impedance 

of the hemispherical dielectric resonator antenna (HDRA) of Ref. [2] was computed as a function 

of frequency. These computed impedances are plotted together with computed impedances 

obtained from the dyadic Green's function analysis [23] and with the measured input impedance. 

As can be seen from Fig. 3.2, the results obtained from the two different analytic techniques are 

in very good agreement. Note that the resonant curves of the theoretical input impedances are 

shifted to a lower frequency than that of the measured impedance and that the reactance of the 

theoretical impedances are less capacitive than the measured reactance. It is believed that these 

discrepancies are due to an effect which is very similar to that of a very thin air gap between a 

dielectric resonator and the conducting surfaces on which it resides [24-26]. 

In order to verify a theoretical model experimentally, it is necessary to have a test device 

which represents the ideal situation as closely as possible. Therefore, to ensure that there would 

be no air gaps between the dielectric material and the conducting surfaces, a CDRA was 

constructed out of a section of PVC tube packed with "Hi K Powder" manufactured by Emerson 

& Cuming, Inc. as shown in Fig. 3.3. The 2.6cm PVC tube with an inner radius a=2.75cm and 
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a wall thickness of 2.5mm was fastened directly to a ground plane with silicone rubber adhesive. 

To accommodate both thin (a*=0.38 lmm) and comparatively thick (a^= 1.295mm) feed probes, 

both SMA and N type connectors were used. Measurements were made using an HP-8510B 

network analyzer. Since the permittivity of the PVC container is low, and the antenna is a 

resonant structure, the container was neglected in the numerical model. To excite the HEMU 

mode, the feed probe was positioned at pf= 1.4cm. The source free resonant frequency of the 

CDR was computed to be 1.377 GHz by using the technique described in [27]. Fig. 3.4 plots 

both experimental and computed input impedances as a function of frequency. As can be seen, 

the experimental and theoretical results are in better agreement than the case of the HDRA. One 

observes slight variations in resonant frequency and impedance levels when computed impedances 

are compared to those obtained by measurements. The greatest variations in impedance levels 

occur for the thicker feed probe. 

An experiment was conducted to further investigate these discrepancies in input impedance 

levels. To ascertain whether or not the wire end caps had any effect upon the input impedance, 

both hollow and solid coaxial feed probes were used with the CDRA of Fig. 3.3. The feed probes 

were made from K&S Engineering's #163 3/32" (0.238125cm) diameter rod and #118 3/32" 

diameter tube. The 1.9cm feed probe was positioned at pf= 1.28cm. As can be seen from Fig. 

3.5, the end cap effect is negligible. The slight difference in measured impedance levels can be 

attributed to experimental error. However, when the 20x20cm ground plane was extended by 

approximately a quarter free space wavelength at the center frequency, without disturbing the test 

antenna, the measured impedance level approached that of the computed impedance as can be 

seen in Fig. 3.6. This is not surprising for a feed probe in this position since it also excites a 

zero order mode component [27]. Therefore, these results suggest that finite ground plane effects 

as well as thin wire theory inadequacies have introduced errors. Other experimental and computed 
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results can be found in Appendix A. 

3.2 Air Gap Study 

3.2.1 The effect of an air gap between the bottom of a CDR and the ground plane 

When a dielectric resonator (DR) resides directly on a conducting ground plane and is fed by 

a coaxial probe through the bottom of the ground plane, the excited DR modes useful for antenna 

purposes tend to be those with a strong electric field component normal to the ground plane. 

Failure to insure complete electrical contact between the bottom of the DR and the ground plane 

can result in very thin air gaps at the dielectric and conductor interface. If the DR is composed 

of a material of high dielectric constant, and an air gap is introduced between the DR and the 

ground plane, the electric field component normal to the ground plane will be much stronger in 

the air gap than it is just inside the DR. Because of this, the resonant frequency and input 

impedance of the antenna can be significantly influenced. A theoretical investigation into the 

effect of an air gap between two unexcited dielectric resonators isolated in free space has been 

reported in [24]. This study did not consider the effect of conductors embedded in the dielectric 

upon resonant frequency, nor did it consider the effect upon input impedance of an actual 

radiating structure. The intent of this section is to present the results of an experimental and 

numerical investigation which illustrates the effect of an air gap on the input impedance and 

resonant frequency of a DR antenna which is excited by a coaxial probe [25-26]. 

Fig. 3.7 illustrates the antenna under test. The antenna is in essence that of Fig. 3.3, except 

that an annular styrofoam spacer is used to simulate an air gap between the bottom of the CDR 

and the ground plane. The dimensions of the annular styrofoam spacer (air gap) are denoted as 

the following: height, h,=0.152mm; inner radius, r,=2.92mm; outer radius, 30mm. The spacer 

thickness varies from 0.0008 to .001 free space wavelengths over the frequency range of 

operation. The feed probe, which is soldered to an SMA connector, is of length lw and radius 
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a». Silicone rubber adhesive was used to fasten the PVC container directly to the ground plane 

for the "no air gap" test case. For the air gap test case, the styrofoam spacer was glued to the 

bottom of the container and then to the ground plane. A small amount of adhesive was used 

around the SMA connector on the ground plane to insure that the powder would not get under 

the spacer. To excite the TMQ, mode, the PVC container was positioned so that the container and 

the feed probe were concentric. 

Again, since the permittivity of the PVC container is low, and the antenna is a resonant 

structure, the container has been neglected in the numerical model. After invoking image theory 

and removing the ground plane, the original antenna was analyzed as a body of revolution (BOR) 

composed of a dipole antenna surrounded by a dielectric cylinder isolated in free space using the 

numerical code described in [28]. 

Fig. 3.8 is a plot of input impedance as a function of frequency for the test antenna of 

dimensions ra=2.75cm, rb=3.0cm, h=2.6cm, ^=0.381mm and lw= 1.369cm. As can be seen 

from the figure, the comparison between measured and computed input impedances for hg=0.0 

is very good. For this case, the frequencies at which the peak values of input resistance occurs 

are at 1.852GHz and 1.864GHz for the measured and computed curves, respectively. For the 

numerical model, it was necessary to increase hg=0.152mm by 0.051mm in order to obtain 

results which compared as favorably as in the \=0.0mm case. This additional spacing, which 

could not be measured for the actual antenna, could easily have been introduced during the 

antenna fabrication. As can be seen from Fig. 3.8, the introduction of an air gap causes a change 

in both resonant frequency and impedance levels. The resonant frequency shifts to 1.936GHz and 

1.924GHz for the measured and computed cases, respectively. 

In order to demonstrate how pronounced the effect of an air gap upon the input impedance 

and resonant frequency of this class of antennas of different permittivity operating at higher 
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frequencies can be, the following numerical study was conducted. The dimensions of the DR 

antenna as shown in Fig. 3.7, with £,=4.0, were selected so that the TMQ, mode was excited near 

4.25Ghz for the case h,=0.0. The dimensions of this antenna are as follows: ra= 1.9174cm, 

h=3.852cm, aw=0.433mm, and lw= 1.15cm. The input impedance of this antenna is plotted as 

a function of frequency together with input impedance of the same antenna with air gaps, 

h,=0.01mm and h,=0.05mm, when r,-^ as a function of frequency, and plotted in Fig. 3.9. 

The antenna was then scaled so that it would operate at the same frequency for three other 

dielectric constants. The input impedance for these antennas was computed for the same two gap 

spacings as was the er=4.0 antenna. The dimensions of the scaled antennas with £,=8.9, 16.0, 

and 22.0 are given in the figure captions of their impedance plots, Figs. 3.10 through 3.12, 

respectively. There are three interesting observations which can be made concerning these series 

of figures. The first is that the air gap causes the antenna resonant frequency to shift upward. 

The amount of shift being proportional to the resonator's dielectric constant. The second is that 

the air gap causes a broadening of the resonant curves which is an indication of a lowering of the 

antenna Q factor. The third is that intentional introduction of low permittivity material between 

the bottom of the DR and the ground plane should result in a more effective radiator with 

improved bandwidth. From what was originally considered to be a fabrication imperfection, one 

has uncovered possible ways to improve antenna performance. It should be pointed out that this 

study was conducted only on the TMQ, DR antenna mode, however, similar behavior may be 

expected for other DR antenna modes which have a strong component of electric field normal to 

a conducting surface. 

3.22. The effect of an air gap surrounding the coaxial feed probe of a DR antenna 

When a dielectric resonator (DR) antenna is fed by a coaxial probe, the electromagnetic field 

boundary conditions demand that the electric field lines terminate normally to the surface of the 
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feed probe. Since the normal component of the electric field is discontinuous across a surface 

separating two media of different permittivities, the introduction of a thin air gap between the 

feed probe and a high permittivity DR may have a significant effect upon the input impedance 

and resonant frequency of the antenna. The intent of this section is to present the results of an 

experimental investigation which demonstrates the effect of an air gap surrounding the feed probe 

of a dielectric resonator antenna. Fig. 3.13 illustrates the antenna under test. In this study, the 

air gap between the dielectric material and the feed probe is simulated by inserting the feed probe 

(aw=0.381mm) into a teflon tube (er=2.1) with an inner radius of 0.3968mm and wall thickness 

t=0.3968mm, as illustrated in section cut A-A of Fig. 3.13. Since electrical lengths are 

inversely proportional to the square root of e„ the use of a teflon tube to simulate an air tube is 

reasonable. 

Using the technique presented in [27], the source free resonant frequencies for the TM^ and 

HEMn modes for the CDR under consideration (without the presence of the feed probe) were 

found to be 2.029GHz and 1.377Ghz, respectively. To excite the TMQ, mode, a feed probe of 

length lw= 1.5cm positioned at pf=0.0cm was used. Fig. 3.14 plots the input impedances vs. 

frequency for TMQ, mode. As can be seen, the resonant frequency shifts from 1.68GHz to 

1.92Ghz and the magnitude of the resonant impedance is reduced upon introduction of the air 

gap. Inserted in Fig. 3.14 is a plot of the return loss as a function of normalized frequency. The 

return loss is given to show that the frequency obtained from the return loss minimum is not an 

indication of the resonant frequency of the antenna. The frequency at which the return loss is 

minimum for both antennas is near the predicted resonant frequency for the source free CDR. 

Note that unlike the antenna without the air gap, the resonant frequency of the antenna with the 

air gap is near the frequency at which the return loss is a minimum. The lOdB bandwidth of 

both antennas is about the same; however, the antenna with the gap is a better 50Q match. The 
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lOdB bandwidth of the no gap antenna appears to be wider only because of the influence of the 

next higher zero order mode. Also obvious from inspection of Fig. 3.14 is that introduction of 

the air gap shifts the next higher zero order mode up in frequency. 

To excite the HEMn mode, a feed probe of length 1^=2.18cm positioned at pf= 1.4cm was 

used. The measured input impedances are presented in Fig. 3.15. The effect of the air gap upon 

this antenna is similar to that of the antenna operating in the TMQ, mode. Upon introduction of 

the gap, the resonant frequency shifts from 1.278GHz to 1.326GHz and the magnitude of the 

resonant impedance is reduced. For this mode, introduction of the air gap slightly decreases the 

lOdB bandwidth, but does not improve the 50Q match. The frequency at which the return loss 

is minimum is near that of the predicted source free resonant frequency of the CDR. Though not 

as obvious, the antenna with the air gap increases the resonant frequency of the next higher order 

mode. This effect can be seen by observing that R* begins to increase near 1.425GHz for the 

no gap antenna while it continues to decrease for the antenna with the air gap. 

33 Parametric Study of Dielectric Resonator Antennas Excited by a Coaxial Probe 

In order to demonstrate how the computer code written to solve the system of equations 

developed in Chapter 2 can be used to investigate the theoretical performance of a CDRA 

operating in the HEMU mode, parametric studies based upon the computation of input impedance 

of the antenna as shown in Fig. 3.1a were performed. The CDRA under consideration has a 

radius of 1.283 cm and a height of 2.566 cm. The diameter of the coaxial feed probe is 0.0236 

cm. The source free resonant frequency of the cylindrical dielectric resonator (CDR) of material 

parameters e,= 8.9 and /zr= 1.0 was determined to be 2.72 GHz by using the technique described 

in [27]. Therefore, the parametric study was conducted over the frequency range of 2.0 to 3.2 

GHz. It should be pointed out that this computed resonant frequency did not include the effect 

of the feed structure.  Henceforth, the resonant mode of the source free (no feed probe) CDR 
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shall be prefixed with "pure", and that of the perturbed CDRA without any additional description. 

The HEMU mode consists primarily of the ±1 Fourier modes of the basis and testing 

functions used in the Galerkin procedure. When the HEMU mode is strongly coupled to the feed 

structure, the computed impedance matrix elements in the coupling blocks [BW] and [WB] of 

equation (2.17) for n=±l will be significantly larger in magnitude than those of any other 

Fourier mode index n. This means that | JM> ±1 of equation (2.26) has the most influence on 

the bracketed term of equation (2.27) and that close to the resonant frequency of the HEMU 

mode, the ± 1 Fourier modes are sufficient for convergence. Hence, one would expect that this 

strong ± 1 mode coupling would manifest itself as a sharp resonant response observable in the 

impedance versus frequency plots. Although the ± 1 modes are dominant, the modes n=-4 to 

+4 were used in all of the computations. 

Fig. 3.16 plots the computed input impedance as a function of frequency for various feed 

positions pt. Fig. 3.17 is a plot of the peak value of input resistance (RJ as a function of feed 

position. Also included in Fig. 3.17 is the frequency at which this peak value occurs. From the 

study of Figs. 3.16 and 3.17, the HEMn mode is observed to be dominant for feed positions of 

0.4<pf< 1.2 cm as evident from the steep resonant curves of Rm versus frequency of Fig. 3.16 

and the operating frequency indicated in Fig. 3.17. The strong resonant behavior is also reflected 

in Fig. 3.16 by the steep slope of the reactance versus frequency curves. Evident from Fig. 3.17 

is that the peak value of Rh begins to drop for pr> 1.1 cm and falls dramatically when the feed 

probe is just outside the resonator. When the probe is outside the resonator, its length is only 

. 14X. Being so short, it is not an efficient radiator and as such is highly capacitive and weakly 
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coupled to the resonator. Note that the input reactance is more capacitive for the case of 

pf= 1.566cm than it is for the case of pf= 1.326cm. This trend for increasing capacitance will 

continue as the feed probe moves further away from the CDR until the system becomes 

completely decoupled. The strongly coupled DBOR modes contribute inductive reactance to the 

input impedance. Hence, for this structure, X;,, does not cross the zero axis when the probe is 

outside the CDR. Fig. 3.17 indicates that the peak value of resistance occurs at a frequency of 

2.77 GHz for all three feed locations pf> 1.283 cm (outside the resonator). This is an indication 

that the pure HEMn mode is not greatly disturbed by the presence of the short monopole. Thus, 

placing the probe outside the resonator also can be used to measure the resonant frequency of the 

DR for some modes to verify computed resonant frequencies. For feed positions pf<0.75 cm, 

Fourier modes other than the ± 1 are coupled to the coaxial probe as evidenced by the broadening 

of the frequency response curves for R,,. Hence the purity of the HEMn mode will be affected 

by the feed locations since other radiating modes are being excited. 

Another interesting study which produced useful information is that of fixing the feed position 

at pf=0.962cm, and varying the length of the feed Iw. The input impedance is plotted in Fig. 

3.18. The peak value of R* versus lw is plotted in Fig. 3.19 together with the frequency at which 

this peak value occurs. From Fig. 3.19, one sees that the HEMn mode is strongly excited for 

1.25 <lw< 1.75 cm. This observation is made based upon the steep slope of R^ and X* as a 

function of frequency and the high peak values of Rj.. Also evident is that the resonant frequency, 

i.e., that frequency at which Rk achieves a maximum, drops for increasing probe length. Fig. 

3.19 is interesting in that for lw< 1.1 cm, the peak value of R* occurs at frequencies from 2.7 
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to 2.77 GHz. This range of frequencies is close to the resonant frequency of the pure HEMU 

mode. One also observes that upon increasing lw, the frequency at which R^ achieves a 

maximum drops. This is as expected since it is well known from perturbational theory [20] that 

when a conductor is introduced into a cavity where the E field is strong, the cavity's unperturbed 

resonant frequency drops. Fig. 3.20 plots the input impedance as a function of normalized 

frequency to better illustrate the resonant response when the permittivity of the CDRA is varied. 

From this figure it can be seen that for the higher permittivity materials, the resonant response 

becomes sharper. This is as expected since increasing the permittivity for a fixed dimension 

resonator results in a higher Q-factor. Also evident from the previous data is that a small 

resonator made of high permittivity material should give the same performance as that of a much 

larger resonator made of a lower permittivity material. Fig. 3.21 shows the effect of the DR a/h 

ratio on the input impedance. This figure shows that the DR parameters, a, 1, and h, can also 

be used to control the resonant frequency and the input impedances. 
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Fig. 3.1a. Geometry of the CDRA. 

Fig. 3.1b. The equivalent imaged problem. 
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Fig. 3.18 Effect of coaxial probe length on the antenna input impedance. €,=8.9, 
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CHAPTER 4 

Thin Slot Apertures Coupled to Dielectric Bodies of Revolutions 

As discussed in Chapter 1, the driving force behind this work is to build a numerical 

electromagnetics code which can be used to design small efficient dielectric resonator antennas. 

Chapter 2 formulated a system of equations for the boundary value problem of thin wire radiators 

coupled to DBORs and solved them via the MoM. Chapter 3 was devoted to the study of coaxial 

probe fed dielectric resonator antennas by implementing the formulation developed in Chapter 

2. In most applications, coaxial probe feeds are normally used to couple with the electric field 

lines. Closed loop feed probes may be used to couple with the magnetic field lines of a DR 

mode. These closed loop probes create fabrication problems, especially when they are located 

within the DR. It has been established experimentally that a narrow slot can excite a DR in such 

a way as to cause it to operate efficiently [29,30]. Hence, a narrow slot aperture in a ground 

plane should be a cost effective alternative to closed loop wire feed probes for magnetic field line 

coupling. To couple with the desired resonator mode, and to achieve proper matching with the 

source, the slot aperture must be properly adjusted. Therefore, an efficient numerical design tool 

is needed to reduce the cost associated with a typical experimental antenna design cycle. 

Recently, a theoretical analysis was performed for the special case of a slot-coupled to a 

hemispherical dielectric resonator antenna [31-33]. This technique is restricted to hemispherical 

structures since it is based on the dyadic Green's function for a dielectric sphere. 

In this chapter, the formulation presented in Chapter 2 for the coupling of a thin wire to a 

DBOR is modified to include the case of coupling of a thin slot aperture in a conducting ground 

plane to a DBOR. From a theoretical point of view, this is an attractive configuration since 

electromagnetic coupling through an aperture results in a division of the original problem into 

two half space problems upon application of image theory. Since the sources and matter in each 
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half space interact only with the slot, practical feed mechanisms may be accurately modelled in 

the half space below the ground plane without introducing additional complications to the 

DBOR/slot problem. 

4.1 Formulation of the Boundary Value Problem 

Consider a DBOR positioned directly over a slot in a conducting ground plane as illustrated 

in Fig. 4.1a. The slot is denoted by S,. E* is the unknown electric field in the thin slot. Fig. 

4.1b illustrates the equivalent problem valid in the half space z<0. This problem has been 

obtained in the following way [34]. After shorting the slot, the conducting ground plane was 

made continuous, and the electric field, P, was restored to its original value at z=0" by placing 

an equivalent surface magnetic current, M.*=uIxE", where ux is a z-directed unit vector, just 

below the surface, S„ (as suggested by the "-" superscript) in the short-circuited ground plane. 

Upon application of image theory, the ground plane is removed and replaced by an equivalent 

surface magnetic current 2M.' on S,. 

The equivalent problem valid for the half space z> 0 is obtained in a similar manner. Again, 

after having shorted the slot in the ground plane, the electric field, E*, was restored to its original 

value by placing an equivalent surface magnetic current, M/=-UzxE', just above the surface, 

S„ (as suggested by the " +" superscript) on the short-circuited ground plane. Image theory then 

yields the equivalent problem valid in the half space z>0 as illustrated in Fig. 4.1c. This 

equivalent problem is further divided into an interior and exterior problem as a direct 

consequence of the equivalence principle. The interior problem may be obtained from Fig. lb 

by substituting J^, with 2M. and S^, with S,. The exterior problem may be obtained from Fig. 

lc by eliminating J«. and S«,. Note that continuity of the electric field through the slot has been 

automatically satisfied by the fact that M.+ =-M." on opposite sides of the slot. 

After enforcing continuity of the tangential component of both the electric and magnetic fields 
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on the surface of DBOR, and continuity of the magnetic field through the slot, the following 

system of integro-differential equations, from which the unknowns l&, MJ«, and M. can be 

determined. These equations may be written in operator form as follows. 

HLd^M^M-) - H^(2M-) = C   on   S, (4.1) 

I^M^M-) + VJl^MJ s2   on   S, (4.2) 

H^(Id.»Md.-2M") + H^d^MJ - 0   on   S,. (4.3) 

The above system of equations consists of the MFIE enforced on the slot, and the PMCHW 

formulation the surface of the DBOR [21]. Note that since the slot aperture is illuminated by an 

impressed source in the half space z < 0, the right hand side of equations (4.2) and (4.3) has been 

set equal to 0. H' is the magnetic field due to the impressed sources and their images in the 

region z<0. 

4.2 Solution Techniques 

The system of surface integral equations (4.1-4.3) are solved using the same Galerkin MoM 

procedure as described in Chapter 2. The basis functions used on the BOR were discussed in 

Chapter 2. Since the slot aperture is very narrow, the only component of current on S, is that 

which is axially directed. Therefore, M. is expanded as the following series functions. 

M - 2dÄ     p-lA »., P.    on  S. (4-4) 
p *  w    * 

where d, is the current expansion coefficient associated with each rooftop basis function A,,(w) 

[35], p, is the total number of basis functions, and w is the width of the slot. 

After applying the Galerkin MoM procedure to the system of equations (4.1-4.3), they may 

be expressed in matrix form as 
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[BB]. 

[BB]„ 

[SB],   [S.B],., 

[BB]a 

[SB]0 

0 [BSJ_, 

[BSJ0 

PB].,       • [BSJ... 

PB]a       [BSJn 

[SB].-    [SB]„        [S.S.] 

|JM>_ 

|JM>_, 

|JM>0 

|JM>a. 

|JM> 1 0 

|M.> 

0 

0 

0 

0 

II> 

(4.5) 

The vectors | JM>„ represent the electric and magnetic current coefficients for the n* Fourier 

mode of the basis functions which reside on Sj. and are given by 

|M„> (4.6) 

The vector | M,> represents the current expansion coefficients for the magnetic currents which 

reside on the surface S.. |l«> represents the known (incident magnetic field) slot aperture 

excitation current in the half space z < 0. 
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The matrix [BB]„ is further partitioned as 

([ZL.J+-[Zi.J)   ([Y;.J+[Y£,J) 

(DCJ+tYtJ)    (-[Z^,J-7,r[ZtJ)_ 

where i;f
2=^,/€,, (q=d or e) and a typical [Z] or [Y] matrix is of the form 

[BJ   [BJ 

[BJ   [BJ j n        L 

[BJ    -[BJ 

-[BJ     [BJ 

(4.7) 

(4.8) 

where [B] = [Z] or [Y], a square matrix of order N, for each Fourier mode n. These matrix 

elements may be obtained by applying duality to the corresponding integral representations given 

in [22]. The matrix [BSJ„ is given by 

-[Zij 

[Ylj 
J a 

and the matrix [S^]„ is given by 

\j&tJ [Y.d.jl 

(4.9) 

(4.10) 

The matrices [BSJ„ and [S.B]. can be further partitioned as 
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[ßS.L ■ 
[YuJ 

and [S.B]a - -K|j   -[Ztj   [Y.1J   [Y.aJ (4.11) 

The matrix [BSJ„ is of order (4Nt x pj and [S,B]a is of order (p. x 4NJ. Integral expressions 

for the matrix elements of the coupling block [BSJ„ are given in Appendix B. The matrix [S„SJ 

is a Z matrix for < w,H(2MJ>. The integral expression for this matrix may be found in [34]. 

Given that the slot is excited by a delta current source, and that the final goal is the 

computation of the slot input impedance, the following steps, as performed in Chapter 2, can be 

performed to obtain the solution for the magnetic current coefficients, M.- 

|JM>a = -[BB]>[BSJ,«|M.>, n=-N,...,N (4.12) 

These results can be substituted into the last equation system (last row) of (4.5) to obtain the 

following matrix equation. 

[[S,B].niBB]^iBSJ.n+...+[S,B]0-[BB]0-
1-[BSJ0+.. 

+[S,B]niBB]u-1iBSi]n-[SIS>]]. 

|M,> = -|I.> 

(4.13) 

The current coefficients, M.» may now be easily obtained by  inverting the bracketed term (an 

admittance matrix) and multiplying the result by   11«>. 

43 The Slot-Coupled Microstrip Line Feed 

As mentioned in the beginning of this Chapter, since the sources and matter in each half space 
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interact only with the slot, practical feed mechanisms may be modelled in the half space below 

the ground plane without introducing additional complications to the DBOR/slot problem. One 

such feed mechanism is the slot coupled microstrip line. 

Fig. 4.2a illustrates the geometry of the DBOR/slot boundary value problem in which the 

DBOR resides directly over a slot in a conducting ground plane, at z=0, which is separated from 

a microstrip transmission line by a substrate of thickness d. Since the geometry of Fig. 4.2a in 

the half space z>0 is identical to that of Fig. 4.1a, the equivalent problem for the geometry of 

Fig. 4.2a valid for z>0 is identical to that in Fig. 4.1c. Because of this, the problem description 

shall not be repeated for this case. 

The half space z<0 consists of a thin dielectric substrate and an infinitesimally thin 

conducting transmission line at z=-d. The micro-strip line, as illustrated in Fig. 4.2b, is 

assumed to be both x-directed and infinitely long, and propagating a quasi-transverse 

electromagnetic (TEM) mode. The slot aperture has been replaced by the y-directed surface 

equivalent magnetic current, M.» as illustrated in Fig. 4.2b. For the sake of clarity, the aperture 

surface, S, has not been shown in this figure. The transmission line is analyzed using the same 

method as that documented in [36]. This method is a combination of reciprocity, and moment 

method analyses, using the exact Green's functions for the planar structure. This method treats 

the slot aperture as a transmission line discontinuity. It is an efficient and accurate method for 

computing the input impedance of a thin slot aperture in the conducting ground plane of a planar 

structure whose substrate thickness is such that only the TM„ mode surface wave propagates. 

Only the results of the analysis shall be given in this work since the details can be found in [36]. 

The magnetic current coefficients, d,, can be found from the following matrix equation, 
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|M>={[Yz<0]+-L[YI>0]+i|AvXAv|}-1   |Av> (4.14) 
V0 

2 

[Y13,0] is the p, x p, matrix given by the bracketed term in equation (4.13), and <Av| is the 

transpose of | Av>.  Using the results listed in Appendix D, the elements of [Y1*0], a p, xp, 

admittance matrix defined for the thin slot aperture, may be expressed in spectral form as 

Y»°=^ [JFu
2(kx)G™(kx,ky)Fp

2(ky) (4>15) 

•cos[k (ym-yj]dkxdk 

where F^ is the Fourier transform of the basis and testing functions.   Again using the results 

listed in Appendix D, the voltage discontinuity vector, | Av>, may be written in spectral form 

as 

Av» " —^TH   f Fu(ky)G^(kx = -/3f,ky)Fp(ky).cos(kyyra)dky (4-16) 
2irZc    --L 

where ßt is the effective propagation constant of the line.  An offset feed line may be modelled 

by replacing y,,, with ym-y, as shown in Fig. 4.3a. 

The effective propagation constant is computed by considering an infinte, x-directed 

microstrip line, of width Wf, supporting a travelling wave current of the form exp(-j/Sfx<j). Using 

the results listed in Appendix D, the expression for the x-component of the electric field is then 

evaluated as [37] 

E„ = -It: | j5(kx^f)Fy(ky)Gf(kx,ky)e^e^dkxdky (4-17) 

where Fy is the Fourier transform of the y-variation of the x- directed electric current distribution 

(assumed to uniform since the strip is very thin), and is given by Fy(ky)=2 sinOCyW^/ky. 
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Enforcement of the electric field boundary condition at the surface of the conducting transmission 

line (after performing the kx integration) yields the following characteristic equation for ßh which 

can be solved quickly by using Muller's method. 

JOf,ky)Fy
J(ky) ' 0 . (4-18) 

-a» 

The voltage reflection coefficient, R, may be computed from the magnetic current (voltage) 

and the voltage discontinuity vector as R=0.5 | M>' | Av> [36]. The slot impedance may be 

computed from the expression 

Z   «zJL. (4.19) 
Cl-R 

where Zc is the characteristic impedance of the transmission line. In many applications, the 

transmission line is open circuit terminated by a stub of length \g/4, where \ is the guide 

wavelength at the center frequency of operation. To compute the impedance of the slot under 

this condition, one simply adds to the input impedance, computed under the infinite line 

assumption, a series impedance, Zrt=-jZctan(/3fLt), where L, is the open circuit stub length 

measured from the center of the slot, as shown in Fig. 4.3b. 

4.4 Numerical Results 

As discussed in Chapter 3, in order to verify a theoretical model experimentally, it is 

necessary to have a test device which represents the ideal situation as closely as possible. In the 

case of the coaxial probe fed DRA, it has been shown that the presence of thin air gaps between 

the dielectric resonator, and the conducting surfaces on which it resides, can have a significant 

effect upon the antenna resonant frequency and input impedance. It is believed that the presence 

of small air gaps between the dielectric resonator, and the conducting ground plane on which it 

resides, will have a similar effect upon the input impedance of the slot coupled DRA.  Because 
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of this possibility, the slot-coupled transmission line model of [36] was incorporated in the 

computer code which implements the dyadic Green's function for a hemisphere [32]. This code 

was then used to verify the application of the theory presented in this chapter. It should be 

pointed out that the only difference between the transmission line model used with the present 

theory, and that incorporated in [32], are the basis functions. Piecewise linear basis functions 

are used in the former; whereas, piecewise sinusoidal basis functions are used in the latter. 

The radius of the HDRA under study was chosen to be 3.09cm. With this radius, the HDRA 

under study would have the same volume as that of the CDRA whose input impedances are 

plotted in Fig. 3.3. Since the h/a ratio of the CDRA of Fig. 3.3 was approximately 1, the TEm 

mode of this HDRA should be excited close to the resonant frequency of the HEMU mode for 

the CDRA under coaxial probe excitation. Plotted in Fig. 4.4, are the computed input 

impedances, as a function of frequency, of a slot-coupled HDRA under delta source excitation. 

As can be seen in Fig. 4.4, the input impedances of both theories are in very good agreement. 

Five basis functions were used on slot in both cases. Fig. 4.5 plots the input impedance of the 

same HDRA as a function of frequency with the transmission line model. Five basis functions 

were used on the slot for the dyadic Green's function analysis. Nine basis functions were used 

on the slot for the present theory. This indicates that the piecewise linear basis functions do not 

yield a solution which converges as rapidly as the piecewise sinusoidal basis functions when the 

transmission line model is implemented. Fig. 4.6 illustrates the effect that a displacement of 

Xrf= 1cm has upon the antenna input impedance and resonant frequency. Seven basis functions 

were used on the slot for both techniques. The Fourier modes -3 to +3 were used in the 

BOR/slot analysis. The behavior is consistent with that of the CDRA analyzed in Chapter 3. 

Since the y magnetic field component of the dominant TEm mode is strongest at x=0, the slot 

should be positioned at xÄ=0.0 for efficient mode coupling. Based upon the coaxial probe feed 
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studies of Chapter 3, a slot displacement away from xtf=0.0, should raise the resonant frequency 

as well as couple to higher order modes. The effect of the higher order mode coupling upon the 

input impedance is that of increasing inductance. These effects can be seen in Fig. 4.3. 

Since one of the objectives of this work is to build a computer code that can be used for 

design of DRAs, it is necessary to have a code which runs very fast. Therefore, it would be 

desirable to use a delta source model to simulate the effect of the slot-coupled transmission line. 

As can be seen from Fig. 4.7, using an average effective permittivity, et„=(et+ l)/2, together 

with a delta source, yields impedance levels and a resonant frequency close to that of the 

transmission line model. Fig. 4.8, which shows the effect an off center transmission line feed, 

also indicates that the delta source model, together with eeff=(e,+ l)/2, is a good first 

approximation for obtaining preliminary design data. Therefore, for initial design work, the delta 

source model should prove to be effective. 

4.5 Experimental results 

The input impedance of slot-fed dielectric radiators has been measured by two different feed 

arrangements: a microstrip-slot excitation and a coaxial-slot excitation. The two measurements 

are based on different data processing procedures, and they complement each other. 

Furthermore, the measurements were performed on radiators made of various relative dielectric 

constants (between er = 12 and er = 80), providing a consistency check over a wide range of 

input parameters. 

The physical layout of the microstrip-slot measurement is shown in Fig. 4.9a. The microstrip 

conductor is located below the ground plane, and it is connected to coaxial connectors of type N 
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which are used for the attachment of the Hewlett Packard Model 8510B network analyzer. The 

ground plane of the microstrip line has a rectangular aperture which provides the excitation for 

the HEMn mode in the dielectric radiator which is placed on top of the aperture. 

The characteristic impedance of the microstrip is 50 Q. The substrate is Rogers RT/duroid 

5880, which has relative dielectric constant er=2.20, loss tangent 0.0004, slab thickness 0.062", 

and copper thickness 1 oz/sq. ft. (corresponding to 35 jum). The ground plane was originally of 

the size 76 x 133 mm (3" x 5.25"); this was later increased to 229 x 203 (9" x 8"). 

Absorbing material was placed around the radiating structure to prevent multiple reflections from 

the surrounding objects in the laboratory. 

The coaxial-slot measuring arrangement is shown in Fig. 4.9b. In this arrangement, the outer 

conductor of the semirigid coaxial line UT-85, of characteristic impedance 50 Q, is soldered to 

one side of the slot. The center conductor of the coaxial line is soldered to the other side of the 

slot. The coaxial line is equipped with an SMA coaxial connector, which is used for the 

attachment to the network analyzer. The ground plane is of the size 1' x 1', and is made of the 

brass metal sheet of thickness 0.021". The dielectric radiator is made of the Emerson Cumming 

type Hi-K powdered dielectric material, with the dielectric constant er = 12. The container for 

the powder is made of a vinyl tube of inner diameter 55 mm, with the wall thickness 3 mm, and 

of relative dielectric constant er = 1.8. The absorbing material is placed around the entire 

structure. 

4. 5. 1 Microstrip-slot measurements 

When the scattering matrix is measured with the network analyzer, the measured object 

constitutes a two-port, delineated by the space between the two coaxial connectors shown in 
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Fig. 4. 9a. The antenna slot is placed symmetrically at the center of the structure. The slot 

impedance has to be de-embedded from the measured scattering parameters. A de-embedding 

procedure well suited for this situation is the so-called TRL (through-reflect-line) method [44]. 

This technique was originally introduced for six-port measurements, but it can be easily adapted 

to the conventional two-port measurements [45]. 

For this measurement, a narrow rectangular slot of the size 23 x 2 mm was used. The 

dielectric resonator used was Trans-Tech D86230905Z407A, of diameter 22.99 mm and height 

10.34 mm, with the relative dielectric constant of 80.0. The de-embedded slot impedance is 

shown in Fig. 4.10a. One observes that the antenna behaves as a resonant circuit. The resonant 

frequency is 1.15 GHz, and the maximum of the impedance is about 600 fl. The imaginary part 

of the impedance shows an odd symmetry about the resonant frequency, varying between +300 

to about -300 Q. 

In the next experiment, the resonator was lifted from the ground plane by inserting a 

dielectric spacer of diameter 25.4 mm and height 0.79 mm (1/32"). The material of the spacer 

is Rexolite, with dielectric constant 2.5. The measured impedance is shown in Fig. 4.10b. It 

is observed that the resonant frequency has shifted toward a higher frequency, namely 1.75 GHz. 

The maximum resistance is now around 220 Q, but the imaginary part of the impedance is no 

longer symmetric about the resonant frequency, varying between +135 Q and -75 Q. 

The third measurement was made with twice as thick a spacer, namely 1.59 mm (1/16"), also 

made of Rexolite. The result is shown in Fig. 4.10c. It can be seen that the resonant frequency 

has moved even higher, to 1.93 GHz. The maximum resistive part of the impedance is now 

about 45 Q, which is a convenient value for matching to a 50 Q microstrip. However, the 

imaginary part of impedance is located between +70 and +28 Q. Probably, a longer slot would 

cause the imaginary part of the impedance to behave symetrically. 

53 



The first conclusion that can be made from these experiments is, that the presence of the 

spacer between the dielectric resonator and the ground plane changes significantly the center 

frequency of the HEMU mode. The second effect of the spacer is that the slot resistance can be 

lowered to a value close to 50 Q. Unfortunately, these two effects could not be simulated 

numerically within the time allotted to the project. 

4. 5. 2 Coaxial-slot measurements 

The measurement circuit in Fig. 4. 9b is a one-port, in which the only de-embedding consists 

of transforming the impedance from the coaxial reference plane through the appropriate length 

of the UT-85 cable. Since a powdered dielectric material is used for this antenna, the slot 

aperture in the ground plane must be sealed in such a way that the measured terminal parameters 

are not influenced by the material used to close the aperture. First, the aperture was filled with 

GE Silicone Sealer and Adhesive which essentially formed a silicone (Si) window in the ground 

plane. The antenna's terminal impedance was measured as a function of frequency. Next, the 

terminal impedance was measured using two different samples of 0.002" thick transparent tape 

(Scotch tape) to cover the Si window from the top side of the ground plane (identified as TOT 

in Figs. 4.11 to 4.14). After removing the tape from the top of the aperture, the terminal 

impedance of this antenna was measured using a large sample of tape to cover the Si window 

from beneath the ground plane (identified as TOB in Figs. 4.11 and 4.14). As can be seen in 

Figs. 4.11 and 4.12, both resonant frequency and impedance levels are influenced by the presence 

of the tape between the bottom of the DR and the ground plane. Also obvious is that the 

presence of the tape on the bottom of the Si window has only a slight influence upon the antennas 

terminal parameters.   From this experimental study, it was decided to measure the terminal 
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impedances without the Si window and with the tape on the bottom of the ground plane. The 

results of this measurement are presented in Figs. 4.13 and 4.14. All of the computed terminal 

impedances have been divided by two, so as not to dwarf the measured impedances. 

Figures 4.13 and 4.14 show both computed and measured terminal impedances for the 

antennas under test. For these measurements, the Si window was not used. For the TOT 

measurements, the aperture was air filled, and for the TOB measurements, the aperture was filled 

with the powdered dielectric material. As can be seen from these figures, the small pieces of tape, 

which essentially just cover the antenna aperture, illustrate how sensitive the HEM„ mode could 

be to small air gaps between the ground plane and the bottom of the DR. It should be pointed 

out that the feed probe displaced from the center of the slot aperture by 1.64mm and that the 

numerical model takes this into consideration. Furthermore, since the terminal impedance was 

computed at the point where the center conductor of the feed line exited the coaxial line, and not 

in the plane of the aperture, Booker's extension to Babinet's principle [46] may not hold. Since 

the theory used in the numerical model does not account for the thickness of the ground plane, 

only modest agreement with measurements can be expected for antennas such as the one used in 

this experiment. 
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Fig. 4.1a. Geometry of the slot aperture coupled antenna. 

üz fe es 
Sc /' **■ 2M.V v 

Fig. 4.1b. The imaged problem valid for z<0. 

IU 
^.£d 

S,..-''        -»»2M,> 

Sde 
M-e.£e 

Fig. 4.1c. The imaged problem valid for z>0. 
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Fig. 4.2a. Geometry of the slot coupled microstrip DR antenna. 
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Fig. 4.2b. Problem valid for the half space z<0. 
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Fig. 4.3a. Coordinates for the slot-coupled transmission line. 
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Fig. 4.3b. Coordinates for the slot-coupled transmission line with tuning stub of length L,. 
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Fig. 4.4.   Input impedance vs. frequency for a slot-coupled HDRA with delta-source 
model.  €,,= 12.0, e,= 1.0, a=3.09cm, y,=x-=0.0cm, L,=3.5cm, W.=0.06cm. 

60 



150 r 

100 - 
C/3 

E 

N 
50 - 

0 

— Dyadic Green's Function/MoM 
- BOR/slot 

■ •••»■■■■ i ■■• ■ t. . . ■ t i i i i i i i i i i 

1.1     1.15     1.2     1.25     1.3     1.35     1.4 
Frequency (GHz) 

Fig. 4.5. Input impedance vs. frequency for a slot coupledYTL HDRA (no stub). 
ea=12.0, e,=2.2, a=3.09cm, y.=x-)=0.0cm, L.=3.5cm, W,=0.06cm, Wf=.15cm, 
d=0.16cm. 
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Fig. 4.6. Input impedance vs. frequency for a slot-coupled/TL HDRA (no stub). 
«-,= 12.0, e,=2.2, a=3.09cm, y,=0.0cm, x*= 1.0cm, L,=3.5cm, W.=0.06cm, 
Wf=.15cm, d=.16cm. 

62 



  TL model (£S=3.8) 
  Delta Source (seff=2.4) 

\ Delta Source (eeff=3.8) 

1.1     1.15     1.2     1.25     1.3     1.35 
Frequency (GHz) 

Fig  4 7    Effect of eM upon the input impedance when using delta source model. 
«=,= 12.0, a=3.09cm, y,=xlO=0.0cm, L,=3.5cm, W.= .06cm, Wf=.15cm, d=0.16cm. 
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Fig. 4.8.   Effect of source location upon the input impedance of HDRA. e, = 12.0, 
e,=2.2, a=3.09cm, x-)=0.0cm, L.=3.5cm, W.=.06cm, d=0.16cm. 
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• Si Window TOT (Tape #1) 
* Si Window TOT (Tape #2) 

—— Si Window (No Tape) 
——- Si Window TOB 

TOB (No Si Window) 

1       1.05     1.1     1.15     1.2     1.25     1.3 
Frequency (GHz) 

Tape #1 = 3x44mm, Tape #2 = 5x44mm 

Fig. 4.11 Measured terminal resistances for the slot coupled antenna of 
Fig. 4.9b. a=27.5mm, b=30.3ram, 
h=26.0mm,t=0.03r,L,=42.0mm, W.= 1.588mm. 
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Fig. 4.12 Measured terminal reactances for the slot coupled antenna of 
Fig. 4.9b. a=27.5mm, b=30.3mm, 
h=26.0mm,t=0.03r,L.=42.0mm, W.= 1.588mm. 
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Tape #1 = 3x44mm, Tape #2 = 5x44mm 

Fig. 4.13'        Measured and computed terminal resistances for the slot coupled antenna of Fig. 4.9b. 
a=27.5mm, b=30.3mm, h=26.0mm,t=0.031",L,=42.0mm, W,= 1.588mm. 
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Tape #1 = 3x44mm, Tape #2 = 5x44mm 

Fig. 4.14 Measured and computed terminal reactances for the slot 
coupled antenna of Fig. 4.9b. a=27.5mm, b=30.3mm, 
h=26.0mm,t=0.03r,L,=42.0mm, W,= 1.588mm. 
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CHAPTER 5 

Conclusions 

In this work, a general formulation has been presented for the solution of the electromagnetic 

boundary value problem generated by a dielectric body of revolution in the presence of a thin 

wire antenna, or in the presence of a thin slot aperture in a conducting ground plane. Since an 

application of practical interest is the computation of the input impedance of a dielectric resonator 

antenna, the computer code written to implement this theory was optimized for this purpose. The 

integrity of this technique has been established both experimentally and numerically by modelling 

cylindrical dielectric resonator antennas excited by a coaxial feed probe. Under the present 

theory, the computed input impedances of a dielectric resonator antenna excited by a coaxial 

probe were verified numerically by comparing them to the input impedances computed by an 

independent numerical code which uses the exact Green's function for a dielectric sphere [23,32- 

33]. The present theory was also verified experimentally by fabricating a test antenna in such 

a way so as to insure that it would accurately represent the theoretical model. This test antenna 

consisted of a vertical PVC tube, fixed on a conducting ground plane, and filled with a powdered 

dielectric material. Not only did this test antenna serve the purpose of validating the present 

theory, it was also used to study the effect of a thin air gap between the dielectric material and 

the conducting surfaces on which it resides. Furthermore, the experimental and numerical air 

gap study revealed that it is possible to enhance the performance of a dielectric resonator antenna 

by separating it from the conducting surfaces on which it resides by a thin, low permittivity 

dielectric material. From an academic point of view, the results obtained from this experimental 

work are also of importance, because they provide data which may be used by future researchers 

as a reference source to aid in developing new theoretical models. 

The validity of the present theory for the coupling of a thin slot aperture to a dielectric body 
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of revolution has also been established numerically. The numerical code used to analyze a 

hemispherical dielectric resonator antenna excited by a thin slot aperture [32] was modified to 

include a slot-coupled transmission line model. As shown in Chapter 4, the two theories yield 

results which are in very good agreement. However, the comparison of the computed and 

measured slot excited input impedances revealed significant discrepancies. The closer 

examination has demonstrated, that both the computed and the measured input impedances depend 

very critically on the thickness of intermediate dielectric layers in the vicinity of the slot. Such 

a layer can be formed by the air gap between the conductive plate and the solid dielectric 

resonator. To avoid the air gaps, a number of measurements were performed with the powdered 

dielectric. Nevertheless, even with the powdered dielectric, it was for instance observed that 

putting the adhesive tape below or on top of the slot made a considerable difference in the real 

part of the input impedance. At present, the agreement between the impedances obtained by the 

numerical model and by the measurement is not satisfactory for the slot excited antennas. 

A variety of numerical and experimental checks have been performed in an effort to 

isolate the reason for the disagreement. Numerical results have been found to agree well with 

the results in the literature for a transmission-line-fed slot [36], a slot-fed hemispherical DRA 

[47], and an annular slot separating dissimilar half spaces [48]. On the other hand, our 

experimental data obtained for different structures, powdered and solid resonators, and for 

different de-embedding procedures all appear to be internally consistent, but disagree with 

numerical data. The data de-embedding procedure for microstrip-fed resonator has been checked 

by inserting a known lumped load at the aperture position, and the results were consistent. Thus, 

it is not clear at this time whether adding more details to the immediate vicinity of the slot model 

is required to improve the situation, or whether yet undetermined factors are distorting either the 

numerical or the experimental results. 
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APPENDIX A 

A Novel Delta Gap Source Model For Cylindrical Dipoles 

The delta gap source model, because of its simplicity and wide range of application, has 

been used extensively as a forcing function for the EFIE of thin wire antenna theory for many 

years. When used with the EFIE, the delta function is implicitly used to model an impressed 

electric field. Equivalendy, the delta function can be thought of as driving the wire antenna with 

a IV discontinuity in scalar potential or with an impressed unit voltage on the surface of the wire 

antenna. The discontinuity in scalar potential is a necessary boundary condition when obtaining 

Hallen's equation from Pocklington's EFIE [19]. The major drawback to the delta function is that 

is that is predicts infinite "gap" capacitance. Furthermore, since the delta function is not in the 

range of the Pocklington "operator," some questions arise concerning its use as a forcing function 

when the EFIE is solved via the method of moments (MoM) [38]. Despite this fact, it is well 

known that good results for the current distribution on thin wire antennas, with the possible 

exception of the current at the delta gap source location, can be obtained. Approximate current 

distributions are sufficient to compute the radiation patterns; however, to determine the input 

impedance of a wire antenna, the current at the source location must be accurately computed. 

Since the coaxial probe feeds for dielectric resonator antennas are modelled as cylindrical dipoles 

in this work, a delta source model which provides a stable, convergent solution for the current 

at the source location is needed. 

Model Description: To analyze coaxial feed monopole antennas, image theory is invoked to 

remove the ground plane. The monopole is then modelled as a dipole in free space as shown in 

Fig. Ala. This same dipole model has been used to analyze the antenna of Fig Alb. In 

accordance with thin wire theory, the end caps of the wire are neglected and the wire in essence 

becomes a tube. In this work, the unknown current has been expanded in terms of a series of 

76 



subdomain basis functions, J„ as 

N T 
Ju   = u  EcJ„ where J.=——, (A.l) 

i 27raw 

the Cj's are the unknown current coefficients, N is the total number of basis functions, T; is the 

"triangle" function, and a« is the dipole radius. Under a Galerkin MoM procedure, the testing 

function would be Jjf where j = 1,2,...,Ng,...,N-l,N, as shown in Fig. Ala. Forming the inner 

product, <Ij,5(z)>, where 5(z) is the delta function, evaluates to a 1 in the generalized voltage 

matrix at the position corresponding to T^ [18]. The problem of poor convergence of the current 

at the delta gap source location can now be explained. Placing a 1 in the generalized voltage 

matrix satisfies the IV discontinuity in scalar potential, but fails to satisfy the boundary condition 

on the impressed electric field, E. This failure stems from the fact that since E* is linked to the 

width of the base of Tg, E' changes for each N. In other words, a new boundary value problem 

is solved for each N. As a result of this, the solution for the coefficient c, may not converge. 

To circumvent this problem, an extended delta gap source model is introduced. The extended 

delta gap source model, E,, is a unit strength electric field of two variables that is impressed over 

an artificially constructed gap of length 5 which may be written symbolically as 

E" - xit h(p-aj[u(z+b-u(z-h]. (A.2) 
* p L l 

The superscript P is used to indicate that the z variation of this field is just a unit amplitude pulse 

which spans the 5 gap. The gap length, 5, is treated as an unknown constant to be determined by 

requiring the tested gap field to be such that S<Jj,Eg> =1. Formation of the inner product, 

results in the following equation. 
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E   f    f     f  _i_i5(p-aJ[u(z+4)-u(z-^dzd^d^, = 1 (A-3) 

Upon solution, we have that 5=3^. This result could also have been obtained by inspection, 

since in the limit d^-Q, the integrand of (A.3) also becomes a delta function in z due to the term 

[u(z+5/2)^(2-5/2)1/3». The expanded delta source model is then implemented by replacing E^/a» 

of (A.2) with the Gaussian function 

E° = u        1     »^ (A.4) 
1        ' \/2^50 

where 5Q is now equal to zjl. The reason for this replacement is that the Gaussian function, Eg°, 

yields a solution which converges more rapidly, and may be numerically integrated with more 

ease than E^/a»,. Since 5„ is a fixed length, and the Gaussian function is smooth, a stable solution 

can be achieved since the electric field boundary function will be theoretically satisfied for all N. 

This model is also appealing because this delta gap model will never have an infinite capacitance. 

This is obvious: since as 5-»0, a,,-**); thus, there is no dipole. For the results presented in the next 

section, when the MoM impedance matrix elements are computed, the exact kernel is used for 

the wire self terms [18], i.e., when the testing and basis functions overlap. For the non-self 

terms, the reduced kernel is used. 

Numerical Results: Using measured data collected by R.W.P King [39] as a basis for comparison, 

computed current distributions for four ground plane backed monopole antennas are presented 

in Fig. A2 through Fig. A5. Both 5(z) and Gaussian forcing functions are used. As can be seen 

from these figures, the two numerical solutions agree quite well except for the current near the 

source location. The Gaussian forcing function gives much better agreement with King's 

measured current distributions. Fig. A6 and Fig. A7 are plots of computed and measured input 
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admittances as a function of h/a^ ("Slenderness Ratio") for a X<j/8 and a 3V8 monopole 

respectively. As can be seen, the computed admittances using the Gaussian delta source model 

are in excellent agreement with the measured admittances for a wide range of wire radii. 

However, the 5(z) source model performs poorly for the thicker monopoles. Note that the 

behavior of the computed admittances as a function of h/a», are consistent for the monopoles 

under consideration. Since the convergence problem is associated with the dipole susceptance, 

Figs. A8 and A9 are convergence plots of the dipole susceptances as a function of N for the 

antennas whose current distributions are given in Figs. A2 through A5. These figures illustrate 

the stability of the Gaussian forcing function. Accurate values for input impedance can be 

obtained with as few as 20 basis functions per wavelength. 

Using measured input impedances for the powdered CDRA described in Chapter 3 as a basis 

for comparison, the stability of the new delta source model was compared to two other delta 

source models. The geometry of the CDRA is shown in Fig. Alb with the labels used in this 

section. The delta sources models used in this study are the following: 

a) The forcing function 5(z). 

b) The Gaussian distribution given in equation (A.4). 

c) The approximate delta function [u(z+8/2)-U(Z-5/2)]/K identified as 1/5 in the figures. 

Computed input impedances as a function of frequency for three different DR antennas are 

presented in Figs. A10 through A17. As can be seen from these figures, the Gaussian delta 

source model outperforms the competing delta source models in predicting the antenna resonant 

frequency and impedance levels. Fig. A18 through A20 are computed current distributions for 

the three delta source models. As can be seen from these figures, all show reasonable agreement 

except near the source location. 

Conclusions:    A novel delta source model, which is very simple to implement, has been 
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introduced and validated through numerical convergence tests and measurements. This new delta 

source provides a simple and accurate means of predicting antenna input impedance. As 

demonstrated in this work, loaded monopole antennas may also be successfully analyzed using 

this new delta source model. 
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Fig. Ala. Geometry of the cylindrical dipole. 
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Fig. Alb. Geometry of the CDRA. 
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Fig. A2.  Current distribution for \J4 monopole with ^=0.0254X0 and N= 15. 
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Fig. A3. Current distribution for V4 monopole with ^=0.0509X0 and N = 15. 
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Fig. A4. Current distribution for \jl monopole with £^=0.0254^, and N=63. 
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Fig. A5. Current distribution for V2 monopole with ^=0.0509X0 and N=63. 
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Fig. A8.  Input susceptance vs. N for \J4 monopole. 
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Fig. A9.  Input susceptance vs. N for \J2 monopole. 
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Fig. A10. Input impedance vs. Frequency for different N using forcing function 
5(z). CDRA parameters: aw= 1.295mm, h/2=2.0cm, p{= 1.4cm, hd=2.6cm, 
a,,=2.75cm, and er=12.0. 
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Fig. All. Input impedance vs. Frequency for different N using Gaussian forcing 
function. CDRA parameters: a^,= 1.295mm, h/2=2.0cm, pf= 1.4cm, hd=2.6cm, 
a,,=2.75cm, and er=12.0. 
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Fig. A12. Input impedance vs. Frequency for different N using forcing function 
1/5. CDRA parameters: a»= 1.295mm, h/2=2.0cm, pf= 1.4cm, hd=2.6cm, 
a,,=2.75cm, and er= 12.0. 
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Fig. A13. Input impedance vs. Frequency for different N using forcing function 
5(z). CDRA parameters: aw=0.381mm, h/2=2.0cm, pr= 1.4cm, h,j=2.6cm, 
ad=2.75cm, and t= 12.0. 
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Fig. A14. Input impedance vs. Frequency for different N using Gaussian forcing 
function. CDRA parameters: ^=0.381mm, h/2=2.0cm, pf= 1.4cm, hd=2.6cm, 
a,,=2.75cm, and er= 12.0. 
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Fig. A15. Input impedance vs. Frequency for different N using forcing function 
1/5. CDRA parameters: ^=0.381mm, h/2=2.0cm, pf= 1.4cm, hd=2.6cm, 
aj=2.75cm, and er=12.0. 
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Fig. A16. Input impedance vs. Frequency for different N using forcing function 
5(z). CDRA parameters: aw=0.381mm, h/2= 1.369cm, pf=O.Ocm, hd=2.6cm, 
a<=2.75cm, and er=12.0. 
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Fig. A17. Input impedance vs. Frequency for different N using Gaussian forcing 
function. CDRA parameters: aw=0.381mm, h/2 = 1.369cm, pf=O.Ocm, 
hd=2.6cm, ad=2.75cm, and £,= 12.0. 
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Fig. A18. Input impedance vs. Frequency for different N using forcing function 
1/5. CDRA parameters: aw=0.381mm, h/2= 1.369cm, pr=O.Ocm, hd=2.6cm, 
a*=2.75cm, and er= 12.0. 
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Fig. A19. Current distribution on coaxial probe for three delta source models 
with N=39, f= 1.31GHz, z^= 1.295mm, h/2=2.0cm, pf= 1.4cm, hd=2.6cm, 
a,,=2.75cm, and er=12.0. 
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Fig. A20. Current distribution on coaxial probe for three delta source models 
with N=39, f=1.35GHz, a»=0.381mm, h/2=2.0cm, pf= 1.4cm, ha=2.6cm, 
a4=2.75cm, and er= 12.0. 
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Fig. A21. Current distribution on coaxial probe for three delta source models 
with N=39, f= 1.89GHz, a^OJSlmm, h/2= 1.369cm, pf=O.Ocm, hd=2.6cm, 
aj=2.75cm, and er=12.0. 
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Appendix B 

BOR/wire coupling matrix elements 

Integral expressions for the matrix elements of the coupling block [BW]„ are given by 

Z^-il^l f dtf d*Jd*mt)T(w)vu,-±T'(t)T'(w)} • {Ü^} (Bl) 

Z,.w'-i^S| dt f dtf Jdw{T(t)T(w)u/u^iT(t)T'(w)} • {^—1 P32) 

2* 

Yuw«=-L I dt f dtf f dvvT(t)T(w)ut«u^xR(1*jk;R)e i*'R"*) (B3) 

Y^<*± f dt f'dtf f dwT(t)T(w)u.-u, x R(1+jk^R)e -*>***> (B4) *~,= 4^ { dtf d* | d^TWTWu/u^ x R. 

where Nt is the t* testing function on S^. and pw is the p* basis function on S«,.   R=r-f and 

R= |R|. The geometrical quantities are illustrated in Fig. Bl. 

As discussed in the body of this work, the triangle and rooftop basis functions are used on the 

wire and the slot, respectively. The elements for the BOR/slot may be obtained from the 

BOR/wire elements with a minor adjustment. The BOR and wire both use four weighted 

impulses as a representation for the triangle function. This weighted impulse representation is in 

essence a four point rectangular rule integration. For the BOR, the triangle function is given as 
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pf.(t) = ET(t)p^^(t-tp^^) (B5) 
p-i 

where 5(t) is the unit impulse function and T is defined as shown in Fig. B2, for i=l with 

di' 
2 

1   2(d1+d2) 

'      (d^5d^ 
2       d1+d2 

(d4+0.5d3)d4 

'*     d3+d4 

4   2(d3+dJ 

and for its derivative, 

dt    '      p-i 

as shown in Fig.B3 for i=l, T'; is given by 

TV d» 
d^d, 

T/-     ^ 
*   2 d^d, 

TV "d, 
d,+d4 

T'4- 
-d4 

^   j.,4 d,+d4 

(B6) 

A(pf(t))= ET'W^t-t^.,) (B7) 

(B8) 
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In Fig. Bl, p, <(>, and z are cylindrical coordinates, and t, 0 form an orthogonal curvilinear 

coordinate system on the surface of the BOR where u, and u^ are orthogonal unit vectors in the 

t and <f> directions, respectively. The outward normal to the surface is defined as ua=utxu>. A 

unit vector on the wire (slot) is denoted as u,, (uj. Source and field quantities are denoted as 

primed and unprimed, respectively. The angle between the Z-axis and ±u, is denoted as ±v. 

Defining the triangle function for the wire and its derivative as 

f(t) = ET(w)p^.45(w-wp^.2) (B9) 

if(w)=ET'(w)^H5(w-w^J (BIO) 
at p-i 

the expressions for the coupling blocks (Bl) to (B4) may be written as 

jk 77   4    4 

Zt.V-r-1 s s {T ,(t)T,,(w){sinVi,[wx/cos0 +w sin<£] +wt,cosv,} 
4ir p-i IM J 'i J 

_Ty(t)TV(w)   'e^^>^ 
k,2 I      r 

Z;,w=iÜlE  E{Tp,(t)T,,(w)[-wx#sin«+wy,cos<M 
4ir p-i i-i    * • 7> p 

1 
p T,(t)T',,(w) ;e*r*».A 

(Bll) 

(B12) 
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1   4   * 
Y.V-—-E E{T,(t)T.,(w){w]t/[sinvi,(z.,-z-Osin^-cosv^Co^sin^-y.,)] 

4lTp-t i-i     p ' 
-wy ;[sinVi,(Z;,-Zj,)cos<^-cosv^Oj/Cos^»-x.,)] 

+w [sinv;,(p.i,sin^-yj,)cos^-sinv;,(p.i,cos^-xj()sin0]} 

(l+jk,r)|i_3_d<^ 

Y;W-J-E E{T.(t)T,,(w){w cos^-z.,,) 
4TTp-t I-l     K 1 ' 

-wvsin^(z.,-z.,) 

+w [(pj/Sin^-yiOsin^+cos^CPi-cos^-Xj,)]} 

* e-)*/■»*> 

(l+jksr)fl_l_d0 

where r is given by 

r={ (p;,cos<^ -x. ,)2+(p; ,sin4> -y. ,f+(z., -Zj ,)2} 

and u» = wxux + w^u, + w^. 

The summation indices are given by 

p'=p+4i-4 

l'=l+4j-4 

i'=.p+2i-2 

j'=l+2i-2 

(B13) 

(B14) 

-V..V+(Z..-TLW
2 (B15) 

(B16) 
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Fig. Bl.  Geometry of the BOR/wire. 
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Fig. B2.a. The triangle function approximation. 
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Fig. B2.b. The derivative of the triangle function 
approximation. 
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APPENDIX C 

BOR/slot Coupling Matrix Elements 

The expressions for the BOR/slot interaction elements are obtained by substituting the 

appropriate dual parameters. Since the current on the thin slot is axially directed, it is not 

necessary to perform a numerical integration for these matrix elements along the coordinate which 

corresponds to the width of the slot. Instead, one simply multiplies the dual of (Bl) to (B4) by 

the width of the slot to obtain the total magnetic current. The symbol A is used to represent the 

rooftop function even though it is identical to the triangle function. 

After doing so, the integral expressions for the matrix elements of the coupling block 

[BS J„ are given by 

(Cl) 

2» 
Z^'^f  M^j^TO^V«, +^T(t)A'(i)}£Z!^IÜ (C2) 

(l+jfcjR)     -j*,R*n*) (C3) Yu
d=_L [ dt f d<t> I dsTCOA^.u, x R!!^: 

r^_L f dt f dtf | dsTQACsOu/u, XRII^ 
(1+jkjR)    -j^R**») (Q^ 

D3 
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where Nt is the t* testing function on Sj. and p, is the p* basis function on S,. R=r-f and 

R= | R. |. Again, as in the case of the BOR/wire coupling matrix blocks, the 4 impulse 

representation for the rooftop (triangle) function and its derivative are used for the evaluation 

of the above integral expressions. By substituting the dual parameters into equations (B11-B14), 

explicit expressions for the BOR/slot coupling matrix blocks may be obtained. 
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APPENDIX D 

Slot/microstrip Spectral Domain Green's Functions 

The following are the required Green's function components from Ref. [36]: 

G^ = Ex at (x,y,d) due to a unit x electric current element at (x^yo.d) 

Gy,™ = Hy at (x,y,0) due to a unit x electric current element at (Xo,y0,d) 

Gyy™* = Hy at (x,y,0) due to a unit y magnetic current element at (xo,yo,0) 

G^ = Ex at (x,y,d) due to a unit y magnetic current element at (xo,y0,0). 

Given that the Fourier transform relation is defined as 

Then, 

where, 

♦0» 

G(x,y)- JL f f GOc^kpe^^e^^dk^dky. P1) 

G» =j^{(e.ko2-kx)k2cos(k1d)+jk1(k0
2-k;)sin(k1d)} !I^5 (D2) 

Gw = _QEM _-jkx
2(6.-l)sin(k1d)^k1 ^ 

yx xy TT T 
•      0Q 

AHM       j    j(k,cos(k1d)+jk2c1sin(kld))(6,k£-ky
a) _jk;k1(g,-l) ^ 

" ""«W. kiT. "     T.T. 

T.-lqcos^^+jkgSinCkjd) (D5) 

T»=€.k2C0S(kid)+Jkisin(kid) ^ 

kf-etf-ß*,        Im k,<0 (D7) 
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k2
2=ko2-/32,      Im k2<0 <PV 

/32=kx
2
+ky

2 (D9) 

Given that the Fourier transform relation is defined as 

FOg- f f(x)ej1c-xdx, C011) 

the following components of the basis/testing functions, 

1/W, for |y|  < W/2 
pulse function:   f(y) = v^1-^ 
F " 0,     for |y|  > W/2 

1-llZl, for |y|  < h/2 
triangle function:   fp(y) h CD") 

0, for |y|  > h/2 

where W is the width of the basis/testing function, and h is the length of the base of the triangle 

function, have the following Fourier transforms, respectively: 

F„(ky)=sinc(kyW/2) (D14) 

F/kp-ii sinc2(kyh/4) (D15) 

It should be noted that the expression (D4) differs from that provided in [36] in that the 

contribution to the Green's function from the upper half space has been removed. 
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